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Abstract. The logical structure we introduce here to describe a (topo-
logical) graph drawing, called subsketch, is intermediate between the
map (determining the drawing when it is planar), and the sketch intro-
duced by Courcelle (determining the drawing in general but assuming
we know the order of the crossings on each edge). For a complete graph
drawing, the subsketch is determined, through first order logic formulas,
by the size, a corner of the drawing and the crossings of the edges.

We prove, constructively, that two complete graph drawings have the
same subsketch if and only if they can be transformed into each other
by a sequence of triangle mutations - or triangle switches. This construc-
tion generalizes Ringel’s theorem on uniform pseudoline arrangements.
Moreover, it applies to plane projections of spatial graphs encoded by
rank 4 uniform oriented matroids.
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1 Introduction

Three subjects meet in this paper: first the dynamical structure of geometri-
cal objects with triangle mutations (or triangle switches), secondly axiomatics
of graph drawings using logical structures as concise as possible, and thirdly
the combinatorial study of visualization of spatial graphs encoded by oriented
matroids.

In the whole paper, graph drawing is understood in the sense of topological
graph drawing, that is drawing of which edges are represented by Jordan arcs
(not supposed to be straight), whereas a graph drawing is called geometrical
when its edges are represented by (straight) line segments. We consider graph
drawings of a graph on a plane where two edges cross at most once and where
the unbounded region is defined by the choice of two given adjacent edges called
a corner (equivalently, we could consider drawings on a sphere, but we would
have then to choose a particular point “infinity” so that the region containing it
would be considered as the “unbounded” one).

From an axiomatic point of view, a general setting is introduced by Courcelle
in [2], allowing both logical and geometrical points of view on graph drawings,
and leading to applications of monadic second order logic to graph drawings. In
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this setting, a graph drawing is determined by its sketch, that is: its underlying
graph, the circular ordering of the edges at each vertex, the pairs of edges that
cross, and the order of crossings on each edge. If the last data is removed, we
get the subsketch of the graph drawing. Hence the subsketch is intermediate
between the sketch and the so-called map of the drawing (which determines
the drawing if it is planar, see for instance [5]). We prove in Section 3 that,
for a complete graph drawing, the subsketch and other useful information, are
determined through first order logic formulas by its number of vertices, a corner,
and the pairs of edges that cross.

A triangle mutation - or triangle switch - in a graph drawing is passing an
edge over the crossing of two other edges, when no obstruction occurs. This
local transformation is shown on Figure 1. Obviously a triangle mutation does
not change the subsketch. We consider the problem of finding a logical structure
for graphs drawings defined up to a sequence of triangle mutations.

Fig. 1. Triangle mutation (or triangle switch)

We prove constructively in Section 4 that, for a complete graph drawing, the
subsketch structure plays this part: it determines the drawing, up to a sequence
of triangle mutations and orientation preserving homeomorphisms.

Note that, if one considers a complete graph drawing with an even number of
vertices, all of them being drawn on the same circle, then the pairs of opposite
vertices define a pseudoline arrangement in a neighbourhood of the centre of
the circle, see Figure 2. In fact, the above result generalizes Ringel’s theorem on
uniform pseudoline arrangements [7] (see Section 5.1).

A consequence of the above result - the original purpose of this paper - is
that two projections of complete spatial graphs, defined by finite sets of points in
general position representing the same rank 4 uniform oriented matroid [1], are
equivalent up to homeomorphism and a sequence of mutations. Hence the com-
binatorial structure of the oriented matroid together with the logical structure
of the projected drawing form the two levels of a modelization of perspectives
in spatial graph visualization (see Section 5.2).

In a graph which is not complete, the subsketch is no more sufficient to
determine the drawing up to triangle mutations. In general, additional data
would be necessary. In this paper, it is an open question. As an example Figure
3 below represents two graph drawings with same crossings and same circular
orderings around each edge, but which cannot be tranformed into each other
with triangle mutations, since they simply have no triangle.
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Fig. 2. Complete graph drawing and pseudoline arrangement

Fig. 3. Two 2-connected graph drawings with same subsketch but no triangle

NB: all proofs of this paper have been removed or shortened in order to fit the
requested size for papers of this WG05 proceedings. A full version is forthcoming.

2 Preliminaries

In this paper, a graph is always a finite, directed, loop-free, connected graph.
The set of vertices of a graph G is denoted Vi, or simply V', and its set of edges
is denoted ﬁg, or simply FE. The underlying undirected set of edges is denoted
E¢, or simply E. In fact, the direction of an edge will be used only to define an
order of the points on a geometrical representation of this edge. So, for a,b € Vg
and (a,b) € ﬁg, we will denote [a,b] = [b,a] € Eg.

A (topological) drawing of a graph G in the real oriented affine plane is a set
of points representing Vi together with a set of drawn edges representing Eg
satisfying the following properties:

D1 - a drawn edge is a Jordan arc (i. e. homeomorphic to a closed segment)
between the two extremities representing the vertices ; a drawn edge contains
no other representation of a vertex of the graph than its extremities.

D2 - two edges having extremities in common (two in the case of multiple
edges) meet only at these extremities ; when two edges with no common ex-
tremity meet, they cross at this intersection point ; two edges with no common
extremity cross at most once.
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D3 - no three edges meet at the same point, except if this point is an extremity
of the three edges.

Note that if Jordan arcs were replaced by line segments in axiom D1, we
would define geometrical graph drawings, for which various properties would
become trivial (for instance the two Lemmas in Section 3).

With a drawing D of the graph G various pieces of information are associated,
encoding the drawing at different levels of abstraction. We call drawn element
the topological representation of this element in the given drawing.

First the relation incg C EG x Vo x Vi is defined by (e, z,y) € incg if
and only if the edge e is directed from the vertex z to the vertex y. Then incg
describes the structure of the graph G.

Secondly the relation sigp C Vg x Eg x Eg is defined by (z, e, f) € sigp if
and only if z is an extremity of e and f, and f is the next edge in the circular
ordering around z in the trigonometric sense of rotation, which is well defined
by definition of a drawing (property D2).

A corner of D is an element (P,3,a) € sigp such that the drawn vertex
P is in the topological boundary of the infinite region of the plane delimited
by D, and the intersections of the drawn edges 8 and « with this boundary
are homeomorphic to line segments (containing P). Note that if the graph is
complete then 8 and « are entirely contained in this boundary.

The set of relations incg, sigp define the map associated with the drawing
D of the graph G. It is well known (see for example [5]) that if D is a drawing
with no edge crossing (except for common extremities), and thus G planar, then
D is determined up to an orientation preserving homeomorphism of the plane
by its map and a corner.

Thirdly, in [2], the relation dcrossp C E’)G X ﬁg is defined by (e, f) €
dcrossp if and only if the drawn edges e and f have no extremity in common,
the drawn edges e and f have one intersection point and f goes from the left of
e to its right when e is directed from bottom to top. Of course (e, f) € derossp
implies (f,e) & derossp. In this paper we do not need directed edges for the
crossing relation, it is sufficient to consider the relation crossp C Eg X Eg,
defined by (e, f) € crossp if and only if the drawn edges e and f have no
extremity in common and the drawn edges e and f have one intersection point.
Of course (e, f) € crossp implies (f,e) € crossp. Then we say that e € Eg and
f € Eg crossin D.

The set of relations incg, sigp, crossp define the subsketch of the drawing D.

Fourthly, in [2], the relation beforep C EG x Eq x Eg is defined by
(e, f,g) € beforep if and only if f # ¢, e and f cross in D, e and g cross
in D, and the intersection point of e and f is before the intersection point of
e and g on the directed drawn edge e. Note that if e crosses f and g then
either beforep(e, f,g) or beforep(e,g, f) but not both. The set of relations
incq, Sigp, dcrossp, beforep define the sketch associated with the drawing D,
as introduced in [2]. By definition of a drawing, the relation be forep induces, for
any edge e, a linear ordering on the elements that cross e. A result of [2] is that
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the drawing D is determined up to an orientation preserving homeomorphism
of the plane by its sketch and its corner.

In view of this result, we will assume from now on that drawings are always
given with a certain corner, and are considered up to orientation preserving
homeomorphisms (that is an homeomorphism of the plane which preserves the
orientation of one - or equivalently any - triangle of the plane). Then we can
identify drawings and sketches, and the following definitions about drawings or
sketches can be made equivalently for one of these two objects, depending on
the point of view: geometrical, or logical. When the context is not ambiguous,
we may omit the suffix p referring to the drawing.

Let D be a drawing of a graph G. We call triangle of D an element (e, f,g) €
Eq x Eq x Eg such that e and f cross in D, e and g cross in D, and f and g
cross in D. The order of the elements in the triplet have no importance, and we
denote the triangle [e, f, g].

The segments of a triangle [e, f, g] are the subsets of the drawn elements
e, f, or g which are delimited by the intersection with the two other elements
of the triangle. The interior of a triangle [e, f, g] is the bounded region of the
plane delimited by its segments and containing these segments. A triangle is
contained in another triangle if the two triangles are not equal, they have two
common elements, and the interior of the first one is contained in the interior
of the second one. We say that h € Eq cuts the triangle [e, f, g], resp. cuts the
triangle e, f, g] twice, if, geometrically, the drawn element h has a non empty
intersection with at least one, resp. two, segment(s) of [e, f, g]. The following
easy Lemma 1 is illustrated by Figure 4.

Lemma 1. If [i, ], k] is a triangle cut twice by e, then one and only one triplet
in { {i.j,e}, {i,k,e}, {j. k,e} } defines a triangle contained in [i, j, k. O

c 7 d N

Fig. 4. Triangle [i, j, k] cut twice by e

k

Let D and D’ be two drawings of the graph G with same subsketch. As D and
D' have the same cross relation, they have same triangles. We say that a triangle
le, f,g] is permuted between D and D' if the ordering of crossings between its
edges along each of its three edges is different in the two drawings, that is if
beforep(e, f,g) = —~beforep: (e, f,g), beforep(f,e, g) = —beforep: (f,e,g), and
beforep(g,e, f) = —beforep: (g,e, f),
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We call free a triangle of which interior has an intersection with the drawing
reduced to the segments of the triangle. In particular it is not cut by any element,
but not that the converse is false as show the triangle [e, k, ] in the left Figure
4 when j is removed.

Given a drawing D of a graph G and a free triangle [e, f, g] of D, the mutation
of [e, f, g] from D is the sketch D' of G for which all relations are the same as in
D, except that e and f, and resp. e and g, and resp. f and g, are permuted on
the drawn edge g, and resp. f, and resp. e. In other words all relations are the
same in D' as in D except that the triangle [e, f, g] is permuted between D and
D’. We denote D — D', and call [e, f, g] the mutated triangle from D to D'.

Hence, a triangle [e, f, g], which is free in D, is permuted between D and
its mutation from D. But, of course, a triangle may be permuted between two
drawings D and D', without being free in D nor in D’.

RG2S

Fig. 5. A sequence of mutations

A sequence of mutations from the sketch of a drawing D is a sequence of
sketches, each one being the mutation of a free triangle from the previous one.
On the example of Figure 5, the triangle containing a vertex cannot be mutated,
but the three other triangles can be mutated triangles in a sequence of mutations.

3 Logical structure of complete graph drawings

In this section, we prove that, for a complete graph drawing with given number
of vertices and given corner, the cross relation is sufficient to determine, through
first order logic formulas, not only the the sig relation and thus the subsketch
of the drawing, but also an ins relation which states if a vertex of a graph is
inside the triangle formed by three other vertices. This is not true for general
graph drawings (see Figure 3). We shall see that these relations determine also
several other relations and finally determine the sketch of the drawing except
the be fore relations for edges of triangles containing no vertex.

Let D be a graph drawing, with corner (P, 3, ). The vertex P is called vertex
at the corner, and the other extremities of @ and 8 are denoted respectively A
and B.

For three vertices e, f,g € Vi, we denote [e, f,g] the bounded region of
the plane delimited by the drawn edges [e, f], [f, g] and [g, €], containing these
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drawn edges. Thus this region does not contain the vertex at the corner P when
P ¢ {e, f,g}. Not that by definition, such a region is equivalent to a closed ball
up to homeomorphism. The relation insp C Vg x Vg x Vg x Vg is defined by
(z,e, f,g) € insp if and only if = ¢ {e, f,g} and the drawn vertex z is inside
the region [e, f, g].

For the construction of the next theorem, we introduce a relation betp C Vi X
E¢ x Eg x Eg called between relation for the drawing D, such that (z,e, f,g) €
betp if the edges e, f, g all have extremity x, and f is between e and g in the
circular order of the edges around z (note that the order is essential in the
sentence: f is not between g and e).

The size of a complete graph drawing is the number of vertices of the under-
lying complete graph.

Theorem 1. The subsketch and the inside relation of a complete graph drawing
are determined, through first order logic formulas, by its size, its crossing relation
and its corner.

Proof. The construction is step by step and uses extensively the topological
definition of the corner and properties (D1) (D2) (D3) of a drawing.The proof
is not difficult and is about two pages long. However the ordering of the steps is
important. Briefly: begin with the inside relations for triplets containing P, then
for general triplets, then consider the between relations around P, and then the
between relations around any vertex. O

Since the sig relations are determined, we easily get the following corollary
by using the restrictions to 4 vertices subdrawings.

Corollary 1. Let D be a complete graph drawing. Its dcross relation is deter-
mined with first order logic formulas by its size, crossing relation and corner. 0O

The following results are trivial in the geometrical case. They generalize to
topological graph drawings, quite technically but easily, using Theorem 1 and
the axioms (D1), (D2), (D3), by considering the several possible representations.

Lemma 2. Let D be a complete graph drawing with given size, crossing rela-
tion and corner. Let f and g be two edges such that either f and g have same
extremity, or f and g do not cross. If f and g both cross an edge e, then the
before(e, f,g) relation is determined by first order logic formulas. O

Corollary 2. Let D and D' be two complete graph drawings with same size,
crossing relation and corner. Then D # D' if and only if there exists a permuted
triangle between D and D'. O

We say that a drawn triangle T contains a drawn vertex a, if the drawn
vertex a is inside the bounded region of the plane delimited by drawn edges of T’
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Lemma 3. Let D be a complete graph drawing, with given size, crossing relation
and corner. Let T = [e, f, g] be a triangle, and a a vertex of D. The property that
the drawn triangle T contains the drawn vertex a is expressible by a first order
logic formula. Moreover, when this property is true for some a, the be fore(e, f, g)
relation is also determined by a first order logic formula. O

Corollary 3. If two complete graph drawings have same size, crossing relation
and corner, then a drawn triangle permuted between the two sketches contains
no drawn vertex of the graph. O

4 Triangle mutations in complete graph drawings

In the previous Section we saw that two complete graph drawings with same
corner and subsketch have the same be fore relations except for triangles con-
taining no drawn vertex. The aim of this Section is to prove that two complete
graph drawings with same corner have same subsketch if and only if they can be
transformed into each other by a sequence of mutations. The “if” way is obvious
since a mutation does not change the subsketch, the “only if” way is made by
an algorithm.

For a drawing D of a graph GG, and a drawn edge e of D, we denote D — e the
drawing obtained by removing the drawn edge e except the intersection points
with other edges. Note that if G — e is not connected, then an extremity a of e
is isolated in G — e, and by definition is not represented in D — e.

Let G be a complete graph with vertices {a1, ..., a,}, the (undirected) edges
of G are denoted e; ; = [a;,a;], 1 <i < j < n. For a drawing D of G, we denote
D, =D and, for 1 <i < n, D; = D — {€in,€it1n,--€n—1,n} In particular,
D, is a drawing of the complete graph on n — 1 vertices ay, ..., a,_1. When D
is given with a corner (P, 8, «), we choose to numerate vertices so that P = ay,
f = [a1,a:2] and @ = [a1,a3], so that it remains a corner of the considered
subdrawings.

Lemma 4. Let 1 < i < n, and let D and D' be two complete graph drawings,
with same size, crossing relation and corner, such that D; = D}. Then there
exists a permuted triangle between D; 1 and Di,,, and a sequence of mutations
from Diyy to D, containing only permuted triangles between D;y 1 and Dj, .

Proof. The proof is about one page long and consists in a sweeping of e;. O

Theorem 2. Let D and D' be two complete graph drawings with same size,
crossing relation and corner. There exists a sequence S(D,D’) of mutations
D=DO® - pW & . 5 D&Y 5 DK = D' from D to D'. Moreover this
sequence can be chosen such that, for any intermediate sketch DD, 1 <0< k-1
the mutated triangle from D to DY) s contained in a permuted triangle
between D) and D'. It is given by the following algorithm.
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Computation of the first triangle T'(D;. D!) from D, to D!
if n <3 or D; = D} then T(D;, D}) =
if n>3and 1<i<nthenletT =T(D;_1,Dj_,)
if T # () then
if T is free in D; then T'(D;,D}) :=T
otherwise T' is cut by e; ,, in D; then there exists (by lemma 1) a unique 7"
contained in T, free in D;, with e;,, € T', and T(D;, D}) := T"'
if T = () then there exists (by lemma 4) T", free in D;, with e;,, € T",
permuted between D; and D}, and T(D;, D}) := T' (arbitrary choice)

Computation of S(D,D’)

if T(D,D') = () then S(D,D") := D

otherwise D" being obtained by mutation of T'(D, D') from D
S(D,D"):=D — S(D",D")

Proof (sum up). We prove Theorem 2 by induction on n and 1 < i < n, using
the previous algorithms. Recall that D, is a drawing of the complete graph on
n — 1 vertices, hence T (D, D7) and S(D;, D}) are built for drawings of K,,_;.
Note that, by Corollary 2, for all 1 < i < n, we have D; # D} if and only if there
exists a permuted triangle between D; and D).

The direct computation of S(D;, D}) can be done the following way: first
build S(D; — e; n, D; —ein) = S(D;i—1, D}_,). The key point is that any triangle
in this sequence at level 4 — 1 is contained by induction hypothesis in a triangle
which is permuted between the current sketch and the final one. Hence it cannot
contain a vertex of the graph according to Corollary 3. So free triangles used in
the sequence of mutations at level i — 1 which are not cut by e; ,, remain free
triangles at level 4.

Then add the mutations built in the algorithm when 7" # () and T is cut
by e;,, using Lemma 1. These added mutations all contain e;,. The sequence
obtained here is denoted S”, and the arrangement obtained from D; by S” is
D?. Then D} ; = D}_, and by Lemma 4 there exists a sequence S” from Dj
to D} using only mutations containing e; ,,. Then S =S’ — S" is a sequence of
mutations from D; to Dj.

At last, T'(D;, D}) is contained in a permuted triangle between D; and Dj:
either T'(D;_1, D}_,) = () and it is a permuted triangle between D; and D}, or it
is contained in T'(D;_1, D}_,), which is contained in a permuted triangle between
D;_1 and D)_, (by induction hypothesis), and so between D; and D). O

5 Examples and applications

5.1 Triangle mutations in pseudoline arrangements

A pseudoline arrangement may be defined as a finite set of curves in the affine
plane, each one being homeomorphic to a line, and such that any two pseudo-
lines cross each other exactly once. We will always consider uniform pseudoline
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arrangements, i. e. no three pseudolines can meet at the same point. We consider
that a pseudoline arrangement is labelled and given with the circular ordering of
the pseudolines at infinity, and is defined up to an orientation preserving home-
omorphism. Pseudoline arrangements (equivalent to rank 3 oriented matroids)
are well studied objects, see [1] chapter 4. They satisfy simple axiomatics with
the be fore relation [1], and even first order axiomatics [3].

Here, a pseudoline arrangement can be considered as a structure similar
to a sketch of which inc and sig relations are not useful, of which crossing
relation is trivial (each element crosses each other element once), and determined,
when each pseudoline is directed, by the linear ordering of the crossings on each
pseudoline, that is by a before relation. Hence all definitions about triangles
and mutations can be done exactly the same way in pseudoline arrangements.
So the previous result and algorithm apply naturally: for an arrangement A on
E = {ey,...,en}, we denote Ay, 1 < k < n, the arrangement on Ej, = {ey, ..., e}
obtained by restriction from A, and we replace D; with A; and e;,, with e; in
Theorem 2. Note that a similar natural inductive construction for a sequence of
mutations has been used for pseudoline arrangements by Roudneff in [8].

The well known Ringel’s theorem on pseudoline arrangements [7] states that
if A and A’ are two uniform pseudoline arrangements with same number of
elements and same circular ordering at infinity then there exists a sequence of
mutations from A to A’. Hence Theorem 2 gives a slight strengthening of this
theorem, which allows to transform A into A’ avoiding mutations of triangles
not contained in a permuted triangle. Indeed, in the generalization to graph
drawings, we want to avoid mutations of triangles containing drawn vertices.

The very important point is that it is not possible in general to transform a
configuration into another one using only mutations of permuted free triangles,
as it would mean there is always a permuted free triangle between two different
configurations, which is false as shown on the example below. This has been
mentioned in [4] from which Figure 6 is taken and made straight. Note that one
of these two arrangements had already been a significant example for another
problem in [1] Figure 1.11.2.

Ezxample. The sequences of triangles built by the previous algorithm applied
to the arrangements of Figure 6 are the following. We separate the two built
subsequences: the first one (S’ in the proof of Theorem 2) built from the previous
level, and the second one when only the last pseudoline has to be moved (S” in
the proof of Theorem 2).

- at level 3: §) (triangles 123 are the same in both arrangements)

- at level 4: (§) — (234 — 134 — 124) (only 4 has to be moved)

- at level 5: (235 — 234 — 135 — 134 — 125 — 124) — (@) (the first is sufficient)
- at level 6: (356 — 235 — 346 — 234 — 135 — 134 — 125 — 124) — (236 —
126 — 136 — 146 — 156 — 456 — 256 — 356)

This example shows two pseudoline arrangements having all their free trian-
gles (123, 145, 356 and 246) in the same position. Then a sequence of mutations
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6 5 4 3 2 1 6 4 3 2 1
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1 2 3 4 5 6 1 2

Fig. 6. Two arrangements with no permuted free triangle

from one to the other must begin with the mutation of a non permuted trian-
gle. Hence the minimal number of mutations needed in the sequence may be
strictly larger than the number of permuted triangles. For instance in the above
sequence, we used twice the mutation of 356. The problem of building a minimal
sequence of mutations in general is open.

5.2 Visualization of spatial graphs encoded by oriented matroids.

Consider a set E of n + 1 points in the 3-dimensional real (or rational) space in
general position, a plane in general position with this configuration, and a € E
the extremal point in F with respect to the plane (i. e. the distance from a to the
plane is maximal). Then the projections, from a to the plane, of the segments
formed by all pairs of vertices is a complete (geometrical) graph drawing on n
vertices (see Figure 7).

3

Fig. 7. Perspective on a spatial graph

Theorem 3. The rank 4 oriented matroid defined by E determines a corner and
the cross relations of the drawing obtained by projection from the extremal point
a € E. Hence it determines the drawing up to a sequence of triangle mutations.

Proof. With the oriented matroid, we know for each triplet in E, and for each
pair of other points, if these two points are on the same side or the opposite sides
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of the plane spanned by the triplet, i. e. we know the relative signs of elements
in a cocircuit defined by the triplet. Then we easily get a corner of the drawing
and its cross relations (but not all the drawing). We end using Theorem 2. O

With theorem 3 we know that if two such configurations of points define the
same oriented matroid up to a bijection of the ground set, then their projections,
from extremal points being in bijection, are the same up to a sequence of triangle
mutations and orientation preserving homeomorphisms.

Note that this application uses mainly particular cases of the constructions
of the paper because: first, the graph drawing obtained by projection is a geo-
metrical graph drawing, that is a drawing with straight edges, and secondly, the
oriented matroid structure may determine directly the inside and map relations
on the drawing.

Note nevertheless that the obtained result is not trivial since it is impossible
in general to transform the first point configuration into the second by an isotopy
of the space preserving the oriented matroid structure (which would have been,
if true, an immediate way to build the required sequence of mutations). This
fact is known in oriented matroid theory [1] as the Universality Theorem of
Mneév, stating that realization spaces of oriented matroid are not connected, and
in fact are birationally equivalent to semi-algebraic varieties. For some other
spatial transformation problems related to spatial graphs, see [6].

Finally, the point a plays the part of a point of view. When a moves in a
region delimited by the planes formed by other points of the configuration, the
oriented matroid data, and the subksetch, are unchanged, but the drawing, and
its sketch, change with a sequence of triangle mutations. When a crosses a plane,
the oriented matroid data changes (a sign changes in some cocircuit). Thus, it is
a certain modelization, using two structural levels, of spatial graph visualization.
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